Day 5 of 20: What is an AI Copilot and why it is the right user experience (UX) for LLMs

Amit Sharma
November 30, 2023
5 min

It was exactly an year ago when a relatively unknown organization released a low-key 'research preview' product. That product was ChatGPT and rest, as all of you know, is history.

By many measures (like the one depicted below) and opinions of well renowned experts, the innovation unleashed by Google's Transformers paper and Open AI's commercial success has ushered us into a take-off phase of AI. (fast or slow take-off is the topic of many a twitter debates).

Fast take off?

In this post (Day 5 of 20 posts in our series on Generative AI), we'll discuss the emerging narrative around 'Co-pilot for X', where X is a typical knowledge task in a typical business setting (we're not talking about discovering new theories of Physics or solving Math Olympiad problems).

What is an AI copilot for Knowledge Work?

Think of an AI Copilot as your digital Sherlock Holmes, minus the deerstalker hat but with all the smarts. In the world of words and data, it's like having a turbocharged assistant. Writing an email? It's your grammar-savvy sidekick. Crunching numbers? It's like having a mathematician in your pocket. And for legal eagles, imagine a junior associate who never sleeps, sifting through case law at the speed of light. It won’t make your coffee, but it’ll brew up answers faster than you can say "Elementary, my dear Watson!" Just remember, it's brilliant but not infallible – the real detective work is still up to you!

(yes, ChatGPT contributed to some of the above word salad. But you get the picture)

Why is 'Copilot' a good approach to deploy AI in knowledge tasks?

We'll build the argument in 3 parts:

  1. Cost of Error vs Value of Efficiency
  2. Copilot vs Autopilot
  3. What about adoption?

Cost of Error vs Value of Efficiency

Lets take a short detour towards the aviation industry - which has a long history of incremental technological advancements. In flight navigation, 'Cost of Error' cannot be any higher (its literally a matter of life and death). Spurred by tremendous investments by OEM's and managed under an extremely robust governance / oversight framework, Autopilot systems, which date back to the early 20th century, have evolved from simple mechanical devices to complex, computer-driven systems that can handle many aspects of flight. This transition didn’t replace pilots but transformed their role, emphasizing monitoring and decision-making over manual control.

Now, coming to knowledge work, lets take a look at few factors:

  • Demand - given the digitization of our economy and society, there is an insatiable and ever increasing demand for professionals who can perform 'knowledge work'. Trend of knowledge workers far outnumbering (and out-earning on an average) factory works has continued for last few decades and looks to become stronger. Hence, the business case for more through-put (i.e. higher efficiency) is strong
  • Cost of Error - while there are significant financial, repetitional and operational risks in errors committed in knowledge work, it hardly compares to aviation. This is not to assert that knowledge work can be full or errors or oversights, but just the fact that it is relatively easy to react to an initial draft & fix its issues (generally) than create new work (having some marble to carve). A well-designed UX, driven by an AI Copilot reduces chances of a severe error in highly knowledge intensive tasks.
  • Accuracy / Learning Rate - most knowledge tasks produce tremendous amounts of 'data exhaust'. That enables LLMs to learn on bigger datasets each time and coupled with improvements in algorithms, the accuracy of LLMs has been increasing at a non-linear rate in last 3-4 years
  • Human in the Loop - a copilot paradigm not only enables the human to be the review layer but also enables humans to retain control of the final output. This is an important psychological aspect of knowledge work.
  • Embedded in your favorite workspace - a copilot is designed to cause minimal disruption to your workflow, requiring minimal cognitive load required  to learn a new system. Hence, its usually embedded inside your product / tool of choice. (Word for contracts ;) )
We believe these factors combine to makes Copilot the right paradigm for infusing AI into knowledge work

Copilot vs Auto-pilot

We believe that today's models represents strong, narrow form of AI, and the best opportunity to integrate AI is with human in the loop, i.e. in a copilot paradigm.

One of the best examples of companies attempting Autopilot is Tesla FSD. And while the AI is stunningly advanced and improving every day, the engineers have realized that achieving the last 1% in accuracy is 100x more difficult than the achieving the last 10% in accuracy, etc. So, it might be counterproductive to wait for the models to become sufficiently advanced that autopilot capabilities could be achieved.

As a business manager, the value that you can extract from Copilot exists today, not in discounted future.

Adoption of AI copilots in knowledge work

Since the copilot paradigm originated (mostly) with 'Github copilot', lets uncover how a 'coding assistant' can help coders across various levels of proficiency. By their own definition, Github copilot is an 'AI-pair programmer that can help developers write code more efficiently'. It can

  • Save time: By generating suggestions for entire lines of code
  • Improve code quality: By catching potential errors early
  • Reduce errors: By automating repetitive coding tasks
  • Increase productivity: By streamlining the development process

Value derived from AI copilots depends upon expertise you bring to the table

We believe that AI copilots are still in their infancy. As of late Oct '23, Github Copilot claims to have over a million paid users (that's about 1% of total Github's user base), across 37K organizations. By any stretch of imagination, that has to be the largest ever deployment of an AI product. There are known issues like it producing code that is not functional or the drift between intent and execution, or code that does not answer the intended problem. Other issues exist like: 

  • It heavily indexes on Python has has a poor coverage of other programming languages,
  • Potential security flaws,
  • And lack of integration with other tools.

We believe that Microsoft's recent launch of Copilot in Office Productivity Suite will further cement this idea. Adoption is likely to be strong due to:

  • LLMs continue to make regular and significant gains.
  • Incentives are aligned for users/buyers, application / AI copilot creators, and investment managers.
  • No fresh transformative research required because the technological components are already in place.
  • A pattern of steadily shorter times for embracing new tech platforms.

AI copilots currently sit between early innovators and early adopters in this curve

In conclusion, we believe that the constraint on changes is not technological. From an R&D perspective, every technological component required to produce these game-changing goods is currently accessible. It is now necessary to assemble the parts. This new class of products offers businesses and knowledge workers a once-in-a-lifetime opportunity.

We may have just seen first few waves of the Tsunami caused by energy event that occurred on Nov 30th, 2022.

More Like This

Copy Paste Contract Clauses

Explore contract law's impact on partnerships, risks tied to clauses, and real-life cases. Leverage ContractKen's robust clause library for streamlined contract management, risk mitigation, and successful partnerships.

Read More

Day 4 of 20 - How to use Generative AI in a safe, secure and private manner

Learn about ContractKen's innovative approach to building a 'Moderation Layer' that allows firms to use Generative AI for contracts in a safe, secure and private manner

Read More

Day 3 of 20 - Contract Summaries using Generative AI

Here, we discuss one of the most powerful application of Generative AI to contracts - summaries. From generic summaries to term summaries to custom summary templates, learn how to leverage LLMs to assist you.

Read More
[Valid RSS]